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We present an experimental study of the time evolution of an isolated anticyclonic
pancake vortex in a laboratory rotating stratified flow. Motivations come from the
variety of compact anticyclones observed to form and persist for a strikingly long
lifetime in geophysical and astrophysical settings combining rotation and stratification.
We generate anticyclones by injecting a small amount of isodense fluid at the
centre of a rotating tank filled with salty water linearly stratified in density. The
velocity field is measured by particle image velocimetry in the vortex equatorial
plane. Our two control parameters are the Coriolis parameter f and the Brunt–Väisälä
frequency N. We observe that anticyclones always slowly decay by viscous diffusion,
spreading mainly in the horizontal direction irrespective of the initial aspect ratio.
This behaviour is correctly explained by a linear analytical model in the limit of
small Rossby and Ekman numbers, where density and velocity equations reduce to
a single equation for the pressure. In particular for N/f = 1, this equation ultimately
simplifies to a radial diffusion equation, which admits an analytical self-similar
solution. Direct numerical simulations further confirm the theoretical predictions that
are not accessible to laboratory measurements. Notably, they show that the azimuthal
shear stress generates secondary circulations, which advect the density anomaly: this
mechanism is responsible for the slow time evolution, rather than the classical viscous
dissipation of the azimuthal kinetic energy. The importance of density diffusivity is
also analysed, showing that the product of the Schmidt and Burger numbers – rather
than the bare Schmidt number – quantifies the importance of salt diffusion. Finally,
a brief application to oceanic Meddies is considered.
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1. Introduction
The observation of deep lens structures in the Canary basin, showing important

density and rotation anomalies, was first reported by Armi & Zenk (1984). Since
then, tens of these huge anticyclones, known as Meddies (Mediterranean eddies),
have been observed to form at the exit of the Mediterranean sea, and their properties
have been analysed and compared (Richardson, Bower & Zenk 2000). The issue
of their longevity is not a trivial one, because Meddies are believed to play a
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relevant role in the interaction between the Mediterranean sea and the Atlantic ocean
(Bashmachnikov et al. 2015). The Great Red Spot constitutes another remarkable
example of a long-lived anticyclonic vortex, which has been observed in Jupiter’s
atmosphere over hundreds of years (Marcus 1993). Anticyclones are also reported
to form in numerical simulations of protoplanetary disks (Barranco & Marcus 2005)
and claimed to contribute to planet formation, which would indicate a lifetime of the
order of millions of years.

A set of four parameters is usually chosen in order to describe these three-
dimensional (3-D) objects: their vertical and horizontal length scales H and L, their
internal rotation rate Ωc and their internal Brunt–Väisälä frequency Nc=√−(g/ρ)∂zρ,
where the c subscripts refer to values evaluated at the centre of the vortex. Several
studies have addressed the problem of predicting the aspect ratio α = H/L as a
function of the ambient Coriolis and Brunt–Väisälä frequencies, f and N, which
characterize the unperturbed background flow. It is commonly accepted that these
variables should be connected as a result of the quasi-geostrophic balance and
hydrostatic balance. A scaling law H/L ∼ f /N has been considered for a long time
(see e.g. McWilliams 1985; Dritschel, de la Torre Jurez & Ambaum 1999; Reinaud,
Dritschel & Koudella 2003), which does not depend on the vortex internal properties.
Recently Hassanzadeh, Marcus & Le Gal (2012) proposed a new model where the
full set of variables H, L, Ro = Ωc/f , Nc enters in a universal quasi-equilibrium
relationship

α ≡ H
L
=
(−Ro(1+ Ro)

N2 −N2
c

)1/2

f . (1.1)

This relationship has been validated by numerical simulations (Hassanzadeh et al.
2012) and observations (Aubert et al. 2012). On the contrary Bashmachnikov et al.
(2015) has observed that the tendency of H/R following the Iberian coast northward
was not in agreement with (1.1). The aim of the present work is to predict and verify
how the full set H, L, Ro,Nc evolves in time.

We perform experiments with a laboratory rotating stratified flow where anticyclones
are generated with the same technique as Hedstrom & Armi (1988), following the
seminal work of Griffiths & Linden (1981). We then measure the evolution of the
velocity field in the equatorial plane. Based on the experimental observations, we
present an axisymmetric model, in contrast with the 2-D theoretical study of Gill
(1981). We observe that the dynamics strongly depends on the combination of both
the stratification and the background rotation. As a consequence, the typical vortex
evolution is significantly different from studies performed in laboratory flows where
just one of the two elements was present. In fact, the stratification suppresses the
Ekman pumping which dominates the vortex decay in rotating non-stratified flow
(Kloosterziel & van Heijst 1991), while rotation makes the action of momentum
dissipation much more convoluted than in the case of a plain stratified flow (Beckers
et al. 2001). In our model, secondary circulations, while small, are found to play a
crucial role. Our results thus significantly differ from the recent model presented by
Ungarish (2015), which only accounts for the viscous dissipation of the azimuthal
motion.

The paper is organized as follows. In § 2, we describe the experimental and
numerical tools that we use in our study. In § 3, we report the main experimental
observations, while in § 4, we detail the derivation of our theoretical model. In § 5,
we compare theory with both experiments and numerical results. Finally in § 6, we
summarize our study and briefly investigate the model application to Meddies.
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2. Investigation methods
2.1. Experimental apparatus

We study the time evolution of an isolated anticyclone in a laboratory rotating
stratified flow using the same experimental apparatus as Aubert et al. (2012). The
flow is produced in a transparent tank (50 cm × 50 cm × 70 cm) mounted on a
rotating table. The tank is filled with salty water linearly stratified in density. The
density profile is obtained by the double-bucket method (Oster 1965). To measure
the density profile we collect small samples of fluid (∼10 ml) at different heights
and analyse them with a density-meter Anton Paar DMA 35. In our experiment
the Brunt–Väisälä frequency N varies between 0.82 rad s−1 and 2.47 rad s−1. For
each experiment we measure the stratification before and after the experiment.
Secondary circulations appear during the spin-up process (i.e. when we turn on
the rotating table) as a consequence of the non-circular geometry of the tank, and
possibly perturb the stratification. Nevertheless we verify that the density profile
is not significantly perturbed by the spin-up, injection and spin-down processes
i.e. the relative discrepancy is approximately 2 %. The rotating table can turn at
up to f /2 = 10 rad s−1 but in the present experiments we restrict the cases to
f /2= 1 rad s−1 and f /2= 0.75 rad s−1. The presence of the stratification inhibits the
Ekman pumping so the spin-up time (i.e. the time before the entire fluid is in solid
body rotation) turns out to be quite long (∼4 h). The anticyclone is generated by
the injection of a fixed amount (∼150 ml) of neutrally buoyant fluid at the centre of
the tank. The injected fluid is rapidly organized into an anticyclone by the Coriolis
force (see e.g. Kloosterziel & van Heijst 1991; Aubert et al. 2012). The injection
is made by a thin retractable nozzle immersed in the fluid by a rack mounted on
the top of the tank. We fix a small sponge sphere at the end of the nozzle to
make the exiting fluid flow as laminar as possible and reduce the mixing with the
ambient fluid. In the following we will assume that the density in the centre of the
anticyclone was always homogeneous at the end of the injection (e.g. Nc(t= 0)= 0).
In our experiments, the injection process lasts between 100 and 150 rotations (4π/f )
of the table, while we analyse the evolution of the anticyclone during a typical time
of 600–900 rotations after the end of the injection and a short transient of about
25 rotations. The fluid is seeded with (10 µm – diameter) hollow glass spheres
and a laser sheet illuminates the particles in a thin horizontal plane intercepting the
anticyclone at its mid-height (i.e. in the equatorial plane). The flow is then recorded
from the top by a 4 Mpx camera at a frame rate of 10 f.p.s., and the velocity field is
obtained by a particle image velocimetry (hereafter PIV) cross-correlation algorithm
(Meunier & Leweke 2003). The velocity field is always averaged over a time interval
of 5–10 rotations which was estimated to be a time scale well separated from both
the short-time oscillations due to experimental noise or waves and the large-time
evolution of the global velocity field. We then consider the averaged azimuthal and
radial velocity (hereafter just azimuthal and radial velocity when for experiments) at
the position where the conditions for PIV were the best (e.g. uniform and sufficiently
high lighting). The error in determining the azimuthal velocity is estimated looking
at its variations over a quadrant at constant radius, and it is approximately 5 %. The
injected fluid is also dyed with rhodamine in order to localize the vortex during the
injection and adjust the position of the horizontal laser sheet once it is formed.

2.2. Direct numerical simulations
Complementary axisymmetric direct numerical simulations (DNS) were performed
using the finite-element solver Comsol Multiphysics. Boussinesq Navier–Stokes
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EXP f (rad s−1) N (rad s−1) Ek Ro α

E01 2.0 1.5 3.8× 10−4 −0.14 0.50
E02 1.5 1.3 3.1× 10−4 −0.12 0.42
E03 2.0 2.5 1.9× 10−4 −0.13 0.29
E04 1.5 2.4 3.1× 10−4 −0.17 0.26
E05 2.0 1.2 3.1× 10−4 −0.14 0.60
E06 2.0 0.8 4.5× 10−4 −0.14 0.90

TABLE 1. Parameters and initial conditions for a set of 6 laboratory experiments about 25
rotations after the end of the injection. The value of the Schmidt number is estimated to
be Sc∼ 700 for all experiments. Here the value of α is deduced from (1.1), because in
the present experiments H cannot be measured directly. We make the hypothesis that the
core of the anticyclone is initially uniform in density, e.g. Nc(t= 0)= 0.

equations and an advection–diffusion equation for the density field are solved in the
frame rotating at a constant velocity f /2, with an imposed linear stably stratified
background density along the rotation axis, characterized by the buoyancy frequency
N. Initial conditions are given by a Gaussian vortex in cyclo-geostrophic balance, i.e.
the initial azimuthal velocity is given by

v = Ro0 fr · exp(−r2/L2
0 − z2/H2

0), (2.1)

with the pressure and density fields computed following the cyclo-geostrophic and
hydrostatic equations respectively, and zero radial and vertical velocities. In particular
each simulation is initialized with zero stratification at the centre of the vortex, in
agreement with experiments, Nc(t= 0)= 0.

The computation domain is 10 times larger than the characteristic width of the
initial vortex L0. Only the upper half of the solution is computed, using symmetry
conditions around the equatorial plane. The other boundary conditions are no stress
and zero density perturbation on the top and equatorial boundaries and no stress and
no density flux on the side boundaries. We use standard triangular Lagrange elements
of type P2-P3 (i.e. quadratic for the pressure field and cubic for the velocity and
density fields). The total number of degrees of freedom is close to 2 million, with
a refined mesh in the region of interest. At each time step, the system is solved with
the backward difference formulae (BDF) temporal solver and the sparse direct linear
solver PARDISO. No stabilization technique is used.

3. Experimental observations
We performed six different experiments for different values of N and f ; parameters

are listed in table 1. The value of N/f varies by a factor 4 over the whole set
of experiments. We also performed DNS in order to compare to the laboratory
experiments as well as to extend our study to a wider region of the parameters
space. In table 2 we list the parameters and initial conditions for a collection of 27
DNS. Experimentally, we measure the velocity field in the equatorial plane of the
anticyclone, during the whole evolution.

We are particularly interested in the strength of the vortex, which is usually
associated with the Rossby number Ro that we introduced in § 1. First of all, we
report that for each experiment the flow is observed to be laminar, axisymmetric and
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SIM N/f Sc Ek Ro0 α

S01 1.00 30.0 1.00× 10−3 −0.20 0.45
S02 1.00 120.0 1.00× 10−4 −0.20 0.45
S03 1.00 700.0 1.00× 10−4 −0.20 0.45
S04 1.00 30.0 1.00× 10−4 −0.20 0.45
S05 0.50 30.0 1.00× 10−4 −0.30 1.16
S06 2.00 30.0 1.00× 10−4 −0.30 0.29
S07 0.75 30.0 1.00× 10−4 −0.30 0.78
S08 0.75 30.0 1.00× 10−4 −0.30 0.73
S09 1.25 30.0 1.00× 10−4 −0.30 0.47
S10 1.25 700.0 1.00× 10−4 −0.30 1.01
S11 0.50 120.0 1.00× 10−4 −0.30 1.16
S12 0.50 7.5 1.00× 10−4 −0.30 1.16
S13 2.00 120.0 1.00× 10−4 −0.30 0.29
S14 2.00 700.0 1.00× 10−4 −0.30 0.29
S15 0.83 30.0 6.39× 10−4 −0.25 0.63
S16 1.62 700.0 3.10× 10−4 −0.17 0.25
S17 1.62 700.0 3.39× 10−4 −0.19 0.25
S18 1.62 120.0 3.39× 10−4 −0.19 0.27
S19 1.62 7.5 3.39× 10−4 −0.19 0.27
S20 1.62 30.0 3.39× 10−4 −0.19 0.27
S21 0.61 700.0 3.10× 10−4 −0.13 0.61
S22 0.61 120.0 4.78× 10−4 −0.24 0.83
S23 0.61 7.5 4.78× 10−4 −0.24 0.83
S24 0.61 30.0 4.78× 10−4 −0.24 0.83
S25 1.00 700.0 1.71× 10−4 −0.26 0.54
S26 1.25 700.0 1.71× 10−4 −0.26 0.43

TABLE 2. Parameters and initial conditions for the whole set of DNS. The initial velocity
profile is always Gaussian as in (2.1). The absolute stratification at the centre of the vortex
is initially Nc = 0. In simulations S01, S04 and S08 the centrifugal term is neglected in
the computation of initial conditions in pressure and density.

mainly in the azimuthal direction. In fact no relevant averaged radial motion can be
detected in the limit of our experimental errors. Also the anticyclone is stable and
its strength is always observed to decay, i.e. Ro(t)→ 0. This may be in contrast with
previous numerical and theoretical studies (Nguyen et al. 2012; Yim 2015; Mahdinia
et al. 2016) according to which the region of parameters we explored is unstable. In
the experiments E05 and E06 (i.e. when N/f is the smallest), the lateral boundaries
of the dyed region in a vertical cut are not totally smooth and appear partially jagged.
Nevertheless the slow evolution of these features did not allow us to determine
whether they were the result of some turbulent mixing produced by the injection or
evidence for the existence of an axisymmetric disturbance with a small, non-negative,
growth rate. We suspect that in our experiments the Re number was not big enough
to trigger any instability or, at least, the associated growth rates were too small
for having the core of the vortex destabilized, and weak disturbances only affected
the periphery of the vortex. This may be consistent with Nguyen et al. (2012) and
Mahdinia et al. (2016) which localised the most unstable mode at the vortex periphery
although a direct comparison is made difficult by their fully inviscid approach. Yim
(2015) showed the existence of instabilities at finite Re number, but no results were
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FIGURE 1. Absolute value of the azimuthal velocity v as a function of radius r at z= 0
from experiment E05. (a) For different times before the end of the injection corresponding
to t= 0 (injection duration of 538 s): from lower to upper curve, t=−484 s, t=−331 s,
t=−181 s, t= 0 s. (b) For different times after the end of the injection: from upper to
lower curve, t = 0 s, t = 214 s, t = 396 s, t = 626 s, t = 916 s, t = 1372 s, t = 2255 s,
t= 2280 s.

presented combining the small Ro number (e.g. Ro ∼ 0.1) and moderate Re number
(e.g. Re ∼ 1000) which characterized all our experiments. Also in our experiments
the Ro evolves in time and a straight comparison with instability analysis at fixed
Ro may be not appropriate. What was clear (e.g. looking at the dyed region in the
equatorial plane) is that for each experiment the core of the anticyclone remained
compact and axisymmetric over hundreds of table rotations.

In figure 1 we report the radial profile of the azimuthal velocity v, i.e. v(r, z= 0), at
different times, up to 450 rotations for the experiment E05. Each profile corresponds
to the time average over an interval of 5–10 rotations. The experimental error is
estimated to be approximately 5 %. The injection process takes approximately a
hundred rotations. One recognizes how the injection process (figure 1a) generates a
non-zero azimuthal velocity at progressively larger radius, while the Rossby number
(i.e. the slope of the profile at r = 0) remains relatively constant. After the end of
the injection (figure 1b) the velocity anomaly spreads to even larger radius and the
modulus of the Rossby number decreases. We remark that the vortex is still spinning
for up to a thousand rotations after the end of the injection. Such a long lifetime and
laminar evolution indicates that a viscous mechanism may control the vortex decay.
The importance of viscous effects is expressed by the Ekman number Ek = 2ν/L2

0f
whose value is reported in table 1 for each experiment. At this stage we neglect any
effect of salt on the viscosity of water and consider ν as the viscosity of pure water
at 20◦, ν= 10−6 m2 s−1. The value of L0 varies between 5 and 10 cm, thus a viscous
time scale given by T = 2/( fEk) is consistent with the experimental observations
reported in figure 2. One clearly sees that irrespective of N/f , the Rossby number
decreases by more than an order of magnitude over a time of the order of T , while
the details of this evolution depend on N/f and will be studied in the next section.

It is well known that a viscous dominated evolution is associated with a diffusion-
like equation. According to Kloosterziel (1990), the solution of a diffusionequation can
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FIGURE 2. Rossby number as a function of time. Different markers correspond to different
experiments. The Rossby number is divided by its initial value for each experiment. The
time is made non-dimensional by T = L2

0/ν where L0 is determined by a Gaussian fit on
the velocity radial profile at time t = 0, i.e. at about 25 rotations after the end of the
injection.

be decomposed into a sum of fast decaying self-similar solutions, whose self-similar
variable reads

η= r/
√

1+ 4t/T. (3.1)

(In the work of Kloosterziel (1990) η= r/
√

1+ 2t/T , because fast decaying functions
belong to the the Hilbert space L2(Rn, e−|x|2/2), while we use e−|x|2 .) All these solutions
decay at a different rate, which in the end leads to one component (i.e. the slowest
in decaying) largely dominating the other ones. When no net vorticity is introduced
in the system (i.e. a vortex produced by injection), the leading component of the
decomposition coincides with a Gaussian isolated vortex (hereafter Gaussian vortex),
frequently used to approximate experimental isolated vortices (Kloosterziel & van
Heijst 1991; Beckers et al. 2001). In this case the velocity profile reads

v(r, z= 0, t)= Ro(t)fr · exp[−(r/L(t))2]. (3.2)

In our experiments the radial profile of v always shows an inner core of quasi solid
body rotation (e.g. v linear in r), smoothed at its max and then rapidly decreasing to 0
at a radius larger than a length scale that we identify with L. In figure 3 we compare
the experimental value of v with the best fit of a Gaussian vortex. We observe some
minor discrepancy near the maximum and the tail of the velocity profile right after
the end of the injection (a) but the agreement improves later in the evolution (b) as
predicted by Kloosterziel (1990). Supported by this first agreement with Kloosterziel’s
theory, we can now verify if the velocity profile remains self-similar during the whole
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FIGURE 3. Absolute value of the azimuthal velocity v as a function of the radius r at
z= 0. Circles correspond to experimental data, the solid line is the best fit of a Gaussian
vortex. (a) Right after the injection. (b) t∼ 0.2T .
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FIGURE 4. (Colour online) Superposition of the rescaled velocity profiles as a function
of the similarity variable η = r/(r0

√
1+ 4t/T) at different times for the whole set of

experiments. For each profile the velocity is divided by its maximum.

evolution. In figure 4 we report the rescaled velocity profiles at different times after
the end of the injection. For each profile the velocity is divided by its maximum and
the self-similar variable is constructed using the diffusive time scale T = L2

0/ν. One
remarks that almost all the profiles collapse on the same master curve even if some
discrepancies appear when N/f significantly deviates from 1 (i.e. E04 and E06).

The above simple diffusive model thus provides a first-order description of our
experimental results. To go further, we present below an analytical approach of our
system, which allows us to better describe the explicit dependence of the system
evolution on N/f .
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4. A model for the lifetime of a pancake anticyclone
4.1. A single equation for the pressure

We consider a cylindrical coordinate system (r, θ, z) which rotates with the angular
velocity f /2. The Navier–Stokes equations in the Boussinesq approximation read

∂v

∂t
+ (v · ∇)v =−∇p′

ρ0
− ρ

′

ρ0
gẑ+ f v× ẑ+ ν∇2v, (4.1)

∂ρ ′

∂t
+ (v · ∇)ρ ′ − N2

g
ρ0wẑ= k∇2ρ ′, (4.2)

∇ · v = 0, (4.3)

where N = √∂zρ̄(g/ρ0) is the background Brunt–Väisälä frequency, ν and k are
the viscosity and salt diffusivity and v = (u, v, w) is the velocity field. We
stress here that ν is intended as a 3-D coefficient (e.g. diffusion is considered
as isotropic). The primed variables denote the variations with respect to the stationary
unperturbed solution including the linear stable stratification. We refer to p′ and ρ ′

as the pressure and density anomalies, while ρ̄ denotes the linear stratification i.e.
ρ(r, z, t)= ρ ′(r, z, t)+ ρ̄(z)+ ρ0, where ρ is the absolute density and ρ0 is a constant.

Based on our experimental observations, a first approximation consists in considering
the flow as axisymmetric, i.e. we neglect any θ derivative. Then if one retains only
the azimuthal component v of the velocity v and the viscosity and salt diffusivity are
neglected, (4.1) and (4.2) reduce to a time-independent system

∂p′

∂r
= ρ0v

(
f + v

r

)
, (4.4)

∂p′

∂z
=−ρ ′g. (4.5)

The two equations above describe the cyclo-geostrophic and hydrostatic balances
along the horizontal and vertical directions respectively. Hassanzadeh et al. (2012)
showed that a stationary solution exists, which corresponds to a compact isolated
vortex centred at r = 0, z = 0. The ellipsoidal contour of the vortex is given by the
isobars and the aspect ratio α follows the universal law (1.1).

Then we consider the first-order approximation around the quasi-equilibrium
state given by the equations (4.4) and (4.5). We assume that terms involving time
derivatives and velocities u and w are small. We also consider small viscous and
nonlinear terms, i.e. small Ekman and Rossby numbers: Ek = 2ν/fL2 � 1, Ro� 1.
The azimuthal component of (4.1), equation (4.2) and the incompressibility relation
then become

∂tv + fu= ν∇2v, (4.6)

∂tρ
′ − ρ0wN2/g= ν

Sc
∇2ρ ′, (4.7)

(1/r)∂r(ru)+ ∂zw= 0, (4.8)

where we introduced the Schmidt number Sc = ν/k in order to compare the salt
diffusion to the momentum dissipation.

Together with (4.4) and (4.5), these form a complete set of linear differential
equations.
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Now we want to make the problem non-dimensional. As a first step, we fix the
azimuthal velocity scale [v] = fL0, the length scale [r] = [z] = L0 and the time scale
[t] = T = 2/fEk. The quasi-equilibrium state equations (4.4) and (4.5) provide the
pressure and density scales, [p′] = ρ0f 2L2

0 and [ρ ′] = ρ0f 2L0/g. Finally, the density
equation relates the time scale and the vertical velocity scale, [t][w] = L0f 2/N2, and
the divergence-free condition imposes that the vertical and radial velocity scales [w]
and [u] be the same. The equations of motion are now non-dimensional and reduce
to

∂

∂t

(
N2

f ∇2
r p+ ∂

2p
∂z2

)
=N2

f ∇2
r

(
∇2

r p+ ∂
2p
∂z2

)
+ 1

Sc
∂2

∂z2

(
∇2

r p+ ∂
2p
∂z2

)
, (4.9)

where Nf = N/f , ∇2
r = (1/r)∂r(r∂r) and the prime on the p variable has been

suppressed. The equation above is linear and can be solved in the transformed
Hankel–Fourier space. A prediction for the Rossby number can be obtained in the
integral form

Ro(t)
Ro0
= 3α0Nf

2

∫ 1

0

(1− x2) dx
[4t(1− (1−N2

f )x2)(1− (1− 1/Sc)x2)+ α2
0N2

f x2 + (1− x2)]5/2 ,
(4.10)

where the subscript 0 denotes variables at t = 0. The numerical integration of (4.10)
allows us to predict at no cost the time evolution of any pancake vortex in a rotating
stratified medium. Also one can solve the equation (4.9) numerically, which provides
the pressure anomaly field at any time and then the velocity and density anomaly
fields through equations (4.4) and (4.5).

Now, we observe that in the specific case Nf = 1, equation (4.9) greatly simplifies
to

∂p
∂t
=∇2

r p+ 1
ScN2

f

∂2p
∂z2

, (4.11)

which admits an exact self-similar solution.
Asymptotically, when both the aspect ratio ∇2

r p/∂zzp ∼ α2 and the Burger number
Bu=N2

f α
2 are small, (4.9) reduces to

1
N2

f

∂p
∂t
=∇2

r p+ 1
ScN2

f

∂2p
∂z2

. (4.12)

We notice that (4.12) is identical to (4.11) once the time is rescaled by a factor N2
f , i.e.

[t]=T/N2
f . On the contrary, in the opposite limit ∇2

r p/∂zzp� 1 and Bu� 1 we recover
the equation (4.11). This variety of asymptotic solutions corresponds to a variety of
possible behaviours, but also illustrates some generic features. Firstly we observe that
in the limit Sc−→∞, (4.11) and (4.12) further simplify to a radial diffusion equation
of the form

∂p
∂t
=∇2

r p. (4.13)

Here we stress that this result does not depend on the aspect ratio α, thus a radial
diffusion should occur even for an initial perturbation whose overall shape is already
vertically flattened (i.e. α� 1). Secondly we observe that the proper limit to neglect
the density diffusion, i.e. the rightmost term of (4.11) and (4.12), is

∇2
r p
∂zzp

1
N2

f Sc
∼ 1

BuSc
� 1. (4.14)
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Thus, only considering the value of the Schmidt number may be misleading in
neglecting or not the density diffusion. Consider for example the case Nf = 1 and a
moderately low aspect ratio α= 0.3: a Schmidt number of order 10 is then expected
to significantly impact on the time evolution, which might appear counter-intuitive. A
detailed discussion of this effect is given in § 5.4. With regards to our experiments
Sc∼ 700 and thus the limit (4.14) is expected to be fairly valid as long as |Ro|> 0.01,
which according to (1.1), is sufficient to have Bu > 0.01. In the following we then
neglect salt diffusion, even if analytical solutions can also be found with this term.

4.2. Exact and approximate analytic solutions
The equation (4.13) can be solved exactly once the initial condition is given. We
consider an initial pressure profile which is Gaussian in both the vertical and the
horizontal directions, which is consistent with the measured experimental velocity
profile (3.2). The evolution in time reads

p(r, z, t)= p0

1+ 4t
· exp[−(r/L(t))2 − (z/H(t))2], (4.15)

where L(t) = L0
√

1+ 4t and H(t) = H0, i.e. H is constant. This strong anisotropy is
uncommon for diffusion-like problems and we claim it follows from the determinant
role played by the secondary flow (u, w) as will be seen in § 5.3. Also, the explicit
time evolution of all the other significant parameters describing the vortex can then
be determined analytically

Ro(t)= Ro0

(1+ 4t)2
, (4.16)

N2 −N2
c (t)=

N2 −N2
c (0)

1+ 4t
. (4.17)

Both the relative rotation and the stratification anomaly (i.e. N2 − Nc) relax to zero,
and the aspect ratio H/L fulfils the small Rossby version of the scaling law (1.1) at
each time.

We stress here that the time dependence of L is common to other initial profiles
(e.g. as Lamb–Ozeen vortex, Kloosterziel & van Heijst (1991)), in agreement with
the work of Kloosterziel (1990). On the other hand the functional form for all
the other parameters are peculiar to the Gaussian isolated vortex. The compactness
and self-similar character of this solution are remarkable but these features are
expected only in the particular case Nf = 1 and asymptotically in the suitable limit
for geophysical applications where α � 1 and Bu� 1. The tricky part here is that,
even if for α � 1, the condition ∇2

r p � ∂zzp is valid over a large portion of the
(r, z) plane, there always exists at least a small region, i.e. in the vicinity of ∂zzp= 0,
where the approximation is not true. In § 5 we will show how this globally affects the
pressure field and prevents the velocity profile from evolving in a truly self-similar
way, whenever Nf 6= 1.

Nonetheless the two limits (4.11) and (4.12) are meaningful irrespective of Nf
and α. We showed that for Nf = 1, the time evolution of Ro has the compact form
(4.16). Correspondingly, the term 1 − (1 − N2

f )x
2 in the denominator of integral

(4.10) simplifies to 1, the x4 dependence is removed, and the integral can be solved
analytically. The same analytical solution is also obtained by substituting x2 in this
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term by the integral lower bound x = 0. Equation (4.10) can then be calculated
analytically, giving

Ro1(t)
Ro0

= 1
(1+ 4t)2

. (4.18)

If we now replace x2 by the integral upper bound 1, 1− (1− N2
f )x

2 simplifies to N2
f

and (4.10) is written:
Ro2(t)

Ro0
= 1
(1+ 4tN2

f )
2
. (4.19)

One can easily verify that the exact solution Ro(t) is bounded by the asymptotic
solutions Ro1(t) and Ro2(t), and that Ro1(t) and Ro2(t) correspond to the exact
solution of (4.11) and (4.12). Thus even if the evolution is self-similar only for
Nf = 1, any other case can always be bounded by two self-similar solutions, which
are identical except for a factor Nf in the time scale.

4.3. Small perturbation approach around Nf = 1
Here we want to derive how the solution of equation (4.13) is modified close to Nf =1.
We define a small parameter ε = Nf − 1 and assume the solution can be written as
p= p0 + εp1 where p0 corresponds to the self-similar solution (4.15) and p1 remains
to be determined. Substituting in (4.9), with the Schmidt term dropped for now, one
finds

∂

∂t

(
∇2

r p1 + ∂
2p1

∂z2

)
=∇2

r

(
∇2

r p1 + ∂
2p1

∂z2

)
+ f (r, z, t), (4.20)

where

f (r, z, t)= ∂

∂t
∂2p0

∂z2
. (4.21)

We observe that p1 fulfils the same equation as p0 at Nf = 1 with an additional forcing
term f (r, z, t) which can be computed explicitly. We cannot find a simple solution
because of the forcing term, thus we consider the two limit cases where either ∇2

r or
∂zz are negligible. When ∇2

r � ∂zz (in particular close to the axis z = 0) we end up
with

∂tp1 =∇2
r p1 + ∂tp0 (4.22)

and when ∇2
r � ∂zz (i.e. at r= L/

√
2 and especially at z=H) one has

∂tp1 =∇2
r p1 + ∂zzp0, (4.23)

where we have used the fact that ∂t∂zzp0 = ∇2
r ∂zzp0, as p0 satisfies (4.13). Numerical

simulations presented in § 5.1 show that when Nf 6= 1, the most significant variations
appear in the velocity field. Thus we take the radial derivative of the two equations
above and solve them for the perturbation of the velocity field, i.e. v1= ∂rp1 as follows
from the geostrophic balance. In the first case one finds

∂tv1 = ∂

∂r

(
1
r
∂(rv1)

∂r

)
+ f1(r, z, t), (4.24)

f1(r, z, t)= ∂

∂t
∂

∂r
p0 =−4r(r2 − 8t− 2)e−(z2/H2

0 )−(r2/(4t+1))

(4t+ 1)4
. (4.25)



www.manaraa.com

700 G. Facchini and M. Le Bars

0 0.2 0.4 0.6

0 0.2 0.4 0.6 0 0.2 0.4 0.6

0 0.2 0.4 0.6 0 0.2 0.4 0.6

0 0.2 0.4 0.6

0.10

0.05

0.10

0.05

0.10

0.05

0.10

0.05

0.10

0.05

0.10

0.05

0.15

E01 E02 E03

E04 E05 E06

FIGURE 5. Evolution of the absolute value of the Rossby number as a function of time
for a collection of experiments. In each panel we report the experimental results (markers),
the exact solution of the linear model (4.10) (solid line) and the two limit solutions Ro1(t)
(dashed line) and Ro2(t) (dotted line). Two series of markers (E and ♦), corresponding
to two distinct radial cuts, are presented to give an estimation of the experimental error.

In the other limit

∂tv1 = ∂

∂r

(
1
r
∂(rv1)

∂r

)
+ f2(r, z, t), (4.26)

f2(r, z, t)= ∂

∂z2

∂

∂r
p0 = 2r(H2

0 − 2z2)e−(z2/H2
0 )−(r2/(4t+1))

H4
0(4t+ 1)2

. (4.27)

Looking at (4.24), i.e. close to z = 0, one sees that the sign of the forcing term f1
is given by (1 − r2/2L2(t)), so that the sign of the velocity perturbation (i.e εv1) is
positive (negative) in the exterior (interior) of the vortex for Nf < 1 and the opposite
for Nf > 1. Similarly, if one looks at (4.26), i.e. close to r= 0, the sign of f2 is given
by (1 − 2z2/H2). Thus the sign of the velocity perturbation is positive (negative) in
the exterior (interior) of the vortex for Nf < 1 and the opposite for Nf > 1. Next we
compare the predictions of our theoretical model to the experimental and numerical
results.

5. Results and comparison of the experiments, numerics and analytical solution
5.1. Comparison of the experiments with the analytical model

In figure 5 we report the evolution of the Rossby number as a function of time
for the whole set of experiments. Experimental results are reported together with
the prediction given by the linear model (4.10), and also with the exact solution of
the radial diffusion equation in the two asymptotic limits described in the previous
section. First of all we verify that the value of the experimental Rossby number
(markers) is bounded by the two analytic solutions Ro1(t) (dashed line) and Ro2(t)
(dotted line), which are both of the type (4.16) and differ by a factor N2

f in the
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FIGURE 6. (a) Evolution of the Rossby number as a function of the time for our 6
experiments. Markers legend as in figure 2. (b) Evolution of the horizontal length L as
a function of time. The value of L is obtained from a Gaussian fit to the velocity radial
profile at each time. In the two panels the dashed lines correspond to the exact solutions
at Nf = 1 (4.16) and (3.1).

time scale. At the same time, as soon as Nf significantly deviates from 1, neither
of these two limits can provide a quantitative prediction of the value of Ro. On the
contrary we observe that the numerical solution of the full linear model (solid line)
is fairly consistent with the experimental results. We recall here that this prediction
demands us to solve numerically the integral (4.10) at only a small computational
cost.

In figure 6(a) we report again the results of all experiments. Here we show the
variable

√
Ro0/Ro− 1/4, which should be linear in t for a diffusive equation, with a

slope 1 for the ideal case given by (4.16) (i.e. the straight dashed line). We notice
that the Rossby number decays slower (i.e. lower slope) in the case Nf < 1 and faster
(i.e. higher slope) in the case Nf > 1. This is consistent with the perturbation analysis
close to Nf = 1, because close to (r= 0, z= 0) we expect an increase of |v| for Nf < 1
and a decrease for Nf > 1. Also we observe that far from Nf = 1, the experimental
data are poorly fit by a straight line. In figure 6(b) we report the evolution of the
horizontal length scale L as a function of the time. The values of L are obtained by
a Gaussian fit to the radial profile of v, and time is rescaled according to the exact
solution of a radial diffusion equation (3.1) (dashed line). In this case the experimental
data are slightly more noisy but we can clearly see that all the experiments spread
around the radial diffusion solution in a moderate way. Also we can see that when
Nf > 1 the radial diffusion is more effective. Again this is in agreement with our
small perturbation theory around Nf =1, which predicts a negative (positive) correction
of |v| in the interior (exterior) and then an additional flattening of the profile. The
opposite reasoning works in the case Nf < 1.

So far we have focused on the velocity field in the equatorial plane of the vortex
because these are the only quantitative data available in our experiments. Also all the
limits we considered in our theoretical approach indicate that the dynamics of the
system should be mainly in the radial direction as long as the density diffusion does
not play an important role. Next we want to verify that this prediction is correct by
looking at the results from DNS together with the solution of the linear model.
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FIGURE 7. (a,b) Azimuthal velocity (a) and density anomaly (b) at three different times,
t = 0.1T , t = 0.3T , t = 1.0T . Solid contours refer to DNS S25, dashed contours refer to
the analytical model. At each time the velocity values are divided by the maximum of
|v|; contours are reported at a constant step of 0.05. In (c,d) we superpose the values of
the azimuthal velocity (c) and density anomaly (d) as a function of z/L0 at different times
between t= 0 (black) and t= T (grey). Velocity values are taken at the value of r where
the velocity is maximum, while density values are taken at r= 0; the two quantities are
divided by their maximum at each time t.

5.2. Comparison of DNS with the analytical model
In figure 7 we consider the case Nf = 1, Sc= 700. In (a) we report the contour plot of
v in the (r, z) plane at three different times. In (c) we superpose the vertical profile
of v at different times. Such a profile is taken at the value of r where |v(r, z= 0)| is
maximum, and all the curves are divided by the maximum value of |v|. In (b,d) we
report the same graphs for the density anomaly ρ ′ with the only exception that the
vertical profile is taken at r = 0. The contour plots show that the two fields clearly
spread only in the radial direction. Also all the vertical cuts collapse on the same
master curve, which indicates that the shape of the two fields stays unchanged in the
vertical direction. We then confirm that the case Nf = 1 can be described as a pure
radial diffusion, as long as condition (4.14) is fulfilled.

In figure 8 we report the same graphs for the case Nf = 1.6, Sc = 700, which is
the same as E04. We observe that the core of the vortex still evolves mainly in the
radial direction, but some vertical spreading appears in the velocity field. The vertical
cuts confirm that some diffusion is acting also in the vertical direction. In figure 9
we consider the case Nf = 0.61, Sc = 700, which is the same as E05. As in the
previous case, the core of the vortex evolves mainly in the radial direction but some
new features appear at later times in the velocity field. In this case we observe the
formation of a patch of positive vorticity (cyclone) above. The vertical cuts of the
velocity field allow us to quantify the strength of this cyclonic cap. At t= T the ratio
of the Rossby number in the caps to the one in the core is approximately 20 %. Here
we stress that the dynamics described in figures 8 and 9 only marginally depends on
the density diffusion and on the nonlinear interactions. The first because BuSc > 1
during the whole evolution, the second because our linear model looks consistent with
the numerical simulations.

Looking at figures 8 and 9, the question arises regarding how to define the length
scales H and L, which are supposed to characterize the region of space occupied by
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FIGURE 8. Similar to figure 7, but for S16 where Nf = 1.62.
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FIGURE 9. Similar to figure 7, but for S21 where Nf = 0.61. Positive values of v are
denoted by dashed-dotted lines (DNS) and dotted lines (analytical model), and reported at
a constant step of 0.025.

the vortex. The question has not been faced so far, because in the case of a self-
similar evolution (i.e. Nf = 1) of a Gaussian vortex, the choice is unambiguous. In fact,
the pressure, velocity and density fields all share a common Gaussian shape, whose
typical lengths are easy to define. When the evolution is not self-similar anymore
and the three fields do not show the same shape as seen in figures 8 and 9, the
choice is not trivial anymore. From the theoretical point of view the pressure field
may be the best candidate because the isopressure lines fairly describe the contour of
a Gaussian vortex. On the contrary, this definition is not practical for experiments and
observations because the pressure field is not necessarily accessible in a direct way.
In this case the best choice is to deduce the value of L from the radial profile of the
velocity anomaly at z= 0 and H from the vertical profile of the density anomaly at
r = 0. Practically, we fit the two profiles with the functional form x exp−x2/X2 and
take the width X as an estimation of the length scale. Alternatively one can estimate
the length scale from the position of the maximum. Now, we notice that both the
vertical spreading (Nf > 1) and the formation of the cyclonic caps (Nf < 1) do not
prevent the core of the velocity anomaly from diffusing radially and barely affect
the density field. As a result, we expect L and H to be weakly sensitive to these



www.manaraa.com

704 G. Facchini and M. Le Bars

1.6

1.8

0.8

1.0

1.2

1.4

1.0

1.5

2.0

1.0

1.5

2.0

(a) (b) (c)

1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0

FIGURE 10. (Colour online) Rescaled value of the horizontal and vertical length scales
L and H as a function of time for Nf = 0.61 (a), 1.00 (b) and 1.62 (c). Both L and
H are obtained by a Gaussian fit and divided by their initial values. L is deduced from
the velocity radial profile at z = 0 and H from the vertical density profile at r = 0.
We superpose the value of L given by experiments (circles), DNS (solid lines) and the
analytical model (dashed lines), as well as the value of H given by DNS (dashed-dotted
lines) and the analytical model (dotted lines).

phenomena. This is confirmed in figure 10, where we report the values of L and H
as functions of the time for three different values of Nf and Sc = 700. We observe
that the value of L always increases, while H is almost constant. In the case Nf = 1
we recover exactly the diffusive time law (3.1), while in the case Nf < 1 (Nf > 1)
the horizontal spreading is lower (faster), in agreement with experiments. In the case
Nf < 1 the value of H even decreases (up to 10 %) as if the initial anticyclone is
confined vertically by the formation of the cyclonic caps.

5.3. Secondary circulations
As we mentioned in the introduction, previous studies neglected secondary circulations
in deriving a model for the decay of a vorticity patch, focusing on the viscous
diffusion of the azimuthal velocity (Ungarish 2015). In our linear model, we do not
suppose that u or w are identically 0 at any stage, while assuming that they are
small compared to v. In figure 11(a) we superpose the secondary circulation (u, w)
to the contour plot of the pressure field using results from DNS. We observe an
inward vertical flux close to r= 0 and an outward horizontal flux close to z= 0. The
maximum magnitudes are observed inside the vortex and are around 0.23L0/T for
u and 0.04L0/T for w. This suggests that the motion associated with (u, w) looks
more like a slow global deformation of the vortex than a circulation where a fluid
particle would travel the same closed path several times. Also this result confirms
that u and w are small compared to v, because in these units v is of the order of a
few hundred.

Next, we want to show that u and w play a primary role in the time evolution
and are responsible for the dominant radial stretching we observe irrespective of
the background and initial parameters. In figure 11(b–e) we report all the terms
of (4.6), the neglected centrifugal and nonlinear terms as a function of z and at a
fixed radius r. Firstly, we confirm that the leading term is the diffusive one and
that the centrifugal term is fairly negligible. Secondly, we observe that the Coriolis
term ( fu) almost compensates the diffusive term, while the time derivative (∂tv) is
approximately five times smaller. In fact the vertical diffusion of v acts primarily on
the generation of a non-zero u, which in turn is coupled via the divergence equation
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FIGURE 11. (a) Secondary circulation field (u,w) superposed to isolines of the pressure
field. Results are from S17 at t/T ∼ 0.1. The external contour line corresponds to p =
p(r = 0, z = 0, t)/e. (b–e) Comparison among the different terms entering the equation
for v against z at a fixed radius. —— diffusion, – – – Coriolis, – - – time derivative,
· · · · · · centrifugal, ∗ nonlinear. (b,c) and (d,e) refer respectively to r/L0 = 0.1 and
r/L0 = 0.7. (b,d) and (c,e) refer respectively to t/T = 0.1 and t/T = 1.0.

to w which finally advects the density field. As a consequence, we always observe a
radial spreading, while for u≡ 0 one would expect the diffusion to act mainly along
the shortest direction, in order to make the perturbed region isotropic. This result
is valid at different radii and times and had already been speculated by Gill (1981).
Nevertheless, we remark that a region in z always exists where u= 0, thus the time
derivative should be always retained and is also determinant in deriving the final
equation for the pressure.

Finally we want to stress that as long as the geostrophic balance persists,
circulations must play a role. In fact, as already noticed by Beckers et al. (2001), the
decay in strength of the vortex caused by momentum dissipation must correspond to
a weakening of the pressure anomaly because of the geostrophic balance. The latter
demands that the density field should also change. Now, salt diffusion cannot explain
this adjustment, because such a response must take place at the viscous time scale.
On the contrary, secondary circulations can do it because they act exactly at that time
scale.

5.4. The effect of the Schmidt number
Here we briefly discuss the effect of the Schmidt number. We recall that our
theoretical analysis indicates that density diffusion should be neglected only in the
limit 1/BuSc� 1. In figure 12 we superpose the results of DNS and the linear model
for different values of the Schmidt number (Sc= 7.5, 30, 120, 700) and two values of
Nf (Nf = 1.6 (a–d), Nf = 0.6 (e–h)). In (a,e), (b, f ), (c,g) we report the evolution of H,
L and Ro, while in (d,h) we report the value of 1/BuSc. We remark that the value of
L and Ro are weakly sensitive to changes in the Schmidt number. On the contrary, the
evolution of H changes drastically with Sc and a vertical diffusion is clearly present
below Sc= 30, corresponding to 1/BuSc of the order of 0.1–1. We then confirm that
1/Sc� 1 is not the relevant parameter to neglect salt diffusion, in contrast to a vortex
in a stratified (i.e. non-rotating) flow (Beckers et al. 2001). The vertical diffusion
is much less effective for Nf < 1, which is a consequence of the formation of the
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FIGURE 12. Comparison of the numerical results for Sc= 7.5 (+), 30 (E), 120 (@) and
700 (A), and two values of Nf = 1.6 (a–d) and 0.61 (e–h). Solid lines correspond to
the linear model. (a,e), (b, f ), (c,g) Evolution of H, L and Ro as a function of the time.
(d,h) Evolution of the parameter 1/BuSc.

cyclonic caps. But in all cases, 1/BuSc tends to increase at large times because of
the radial spreading (i.e. α diminishes), thus some density diffusion always appears
at large times. Finally, our analytical model shows that for BuSc < 1, secondary
circulations are reversed compared to the case presented above. This mechanism was
already described by Godoy-Diana & Chomaz (2003) in the stratified non-rotating
case. While very interesting, it is not relevant for the experimental and numerical
results presented here, and is beyond the scope of this paper.

5.5. The linear approximation
All the results we discussed above show that our linear model is able to predict, in a
qualitative way, all the phenomenology arising from both experiments and numerical
simulations. In this section we want to address this comparison in a more quantitative
way. The good point about numerical simulations is that they allow us to look at each
of the terms we neglected in the linear model and to compare them to the leading
terms. In figure 13 we compare the results of the DNS S22 with the linear model. The
radial and vertical cuts of the velocity field (b,c) show some discrepancies which can
be estimated to be approximately 10 % with respect to the maximum. We then expect
an error of the same order in predicting the value of the Rossby number. In (d,e) we
report the absolute value of all the terms which appear in the density equation. The
reason for considering only the density equation is that a systematic analysis of our
numerical simulations showed that the ratio of the nonlinear terms to the leading terms
is much less important in all other equations. One observe that at earlier time (d) the
maximum of the nonlinear terms reaches 25 % of the leading terms while the ratio
reduces to 15 % at larger time (e). Thus we verify that the linear model is a good
approximation at any time.

6. Conclusions
We study the evolution of an anticyclone created by injection in a laboratory

rotating stratified flow. We measure the velocity field in the equatorial plane and
observe a slow decay of the Rossby number. The profile of the azimuthal velocity
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FIGURE 13. Comparison of the DNS S22 with the linear model. On (a) we report the
(r, z) contour plot of the azimuthal velocity v at time t/T = 1. Negative (positive) values
are denoted by a solid (dash-dotted) line for the numerical simulation and by a dashed
(dotted) line for the linear model. In (b,c) we report v as a function of r (b) at z = 0
and v as a function of z (c) at the value of r where |v| is maximum. Velocity values are
divided by velocity maximum at t = 0. In (d,e) we report the absolute value of all the
terms which appear in the density equation as a function of z at r/L0= 0.1. (d) t/T = 0.1,
(e) t/T = 1.0. —— time derivative, – – – nonlinear, – - – advection, · · · · · · diffusion.

spreads radially with a time scale of the order of 2/Ekf . The same behaviour is
observed for different values of the ratio N/f from 0.4 to 1.6, and the vortex
always looks stable and axisymmetric within the range of explored parameters. We
consider the axisymmetric Navier–Stokes equation in the Boussinesq approximation
and linearize around the quasi-equilibrium solution. In the limit of small Rossby
and Ekman numbers |Ro| � 1, Ek� 1, the system of equations reduces to a single
equation for the pressure. We show that this equation ultimately reduces to a radial
diffusion equation in the case Nf = 1; in this case the azimuthal velocity evolves in
a self-similar way. For Nf 6= 1 a semi-analytic solution can be found using a spectral
decomposition and solving the problem numerically. An integral solution for the
Rossby number is presented, which is fast to compute and fairly consistent with our
experimental results. We predict that the core of the azimuthal velocity perturbation
should always spread radially irrespective of the initial aspect ratio. This validates
the relevance of the time scale T = 2/fEk = L2

0/ν, even for small aspect ratios. This
behaviour is validated by DNS (i.e. including all the nonlinear terms) and is in
agreement with experimental results. We claim that this behaviour is a consequence
of the main role played by the radial and vertical circulations u and w driven by
viscous diffusion of the azimuthal velocity v. Hence neglecting u and w may be
misleading in determining the decay process, even if they are at least two orders of
magnitude smaller than the azimuthal velocity v. Beyond radial diffusion, we observe
the appearance of new features in the azimuthal velocity field above and below
the initial anticyclone. For Nf > 1, the azimuthal velocity diffuses also vertically
and a column of weak negative vorticity is formed close to r = 0. For Nf < 1, a
couple of weak cyclonic caps appear above and below the initial anticyclone. Finally,
our theoretical analysis and numerical simulations show that the density diffusion
comes into play as soon as 1/BuSc∼ 1, even if Sc� 1, leading to significant vertical
diffusion.
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The present study was conceived as a completion of the previous work by Aubert
et al. (2012) and Hassanzadeh et al. (2012), the aim being to determine the explicit
time evolution of the relevant parameters H,L,Ro and Nc. The linear model we derive
can be solved by a spectral method and allows us to predict the value of the velocity
and density field at any time. The value of H and L are then deduced from a Gaussian
fit while Ro and Nc correspond to the vertical and radial derivative at the origin of
the velocity and density fields, respectively. The same approach is followed for DNS.
We verify that in both cases the scaling law (1.1) is well satisfied.

As a conclusion we briefly address one of the natural phenomena which motivated
the present study, i.e. the strikingly long lifetime of Meddies. The recent extensive
review by Bashmachnikov et al. (2015) reports that a large number of Meddies
present a small Rossby number (0.05 < |Ro| < 0.25) and a Burger number smaller
than 0.5, which is also the case for our experiments. As a drawback, the experimental
set-up does not allow us to reach ocean-relevant values of Nf (e.g. Nf ∼ 30) by more
than an order of magnitude. Nonetheless, the present study may serve as guideline
for future field investigation and observations.

We verify that in our experiments the motor for the decaying process is viscosity,
which is confirmed by our linear model and DNS. The comparison with real Meddies
rises three major issues. Firstly, field observations (Richardson et al. 2000) showed
that most Meddies are destroyed by collision with seamounts. Thus a viscous decay
does not explain the very end of these objects, but still may describe their evolution
for a significantly long time (1–3 yrs). Then, our experimental anticyclones are more
laminar than oceanic ones by orders of magnitudes. As a consequence, the flow at the
boundaries of real Meddies is likely to be much more turbulent than what we observe
in experiments and instabilities may appear which we did not observe. In particular
the molecular viscosity ν of water seems not to be the relevant parameter for the
definition of the Ekman number, thus we consider a turbulent effective viscosity
νeff . The issues coming with this choice are twofold. First, the horizontal (νH

eff ) and
vertical (νV

eff ) turbulent effective viscosities are likely not to be the same because
the ocean is a stratified medium. Second, the values available in the literature for
both νV

eff and νH
eff vary over quite a broad spectrum. At this stage we neglect this

anisotropy by considering only one 3-D coefficient νeff = νV
eff ∼ 10−3 m2 s−1, which

is an intermediate value among those proposed in the literature (see e.g. Ledwell,
Watson & Law 1993; Large & Gent 1999; Canuto et al. 2001). The reason for
this rough approximation is the following. The ratio of the vertical component of
the Laplacian operator to the radial one can be estimated as 1/α2 ∼ 2500, thus
if νH

eff /ν
V
eff is not too big, the horizontal contribution to the turbulent momentum

dissipation (e.g. νH
eff∇2

r ) remains negligible in any case. Bogucki, Jones & Carr (2005)
performed in situ dye-release experiments which indicated a value of the horizontal
eddy diffusivity of νH ∼ 0.1 m2 s−1, consistent with the lower bound previously given
by Sundermeyer & Ledwell (2001). According to that, and for νeff = 10−3 m2 s−1

and α ∼ 0.02, our approximation appears to be consistent, even if a careful decision
regarding its validity is beyond the scope of the present study. A similar question
arises with the choice of the relevant salt diffusion coefficient (e.g. the choice of the
effective Schmidt number) which is even more complex and beyond the scope of our
study.

As an illustration of the application of the present paper, we show in figure 14
the predictions of our model in comparison with the simplified case where only
the momentum dissipation is considered (e.g. both rotation and stratification are
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FIGURE 14. (a) The initial velocity field for our model Meddy, taken as Gaussian. We
take Nf = 30, α0= 0.017, L0= 30 km, Sc= 30, νeff = 10−3 m2 s−1. (b,c) The velocity field
after 3 yrs, in the case of plain diffusion and our model respectively. In (d) we report
the evolution of the Rossby number in the case of plain diffusion (dashed line) and our
model (solid line). At each time the velocity values are divided by the maximum of |v|;
contours are reported at a constant step of 0.05.

suppressed), choosing arbitrarily H = 500 m, L = 30 km, νeff = 10−3 m2 s−1 and
Sc = 30. We observe that, after 3 yrs, the velocity field tends towards a more
isotropic configuration in the case of plain diffusion (second panel) while a smaller
change is predicted by our model. In a similar way the modulus of the Rossby
number decreases more slowly in the case of our model. Weak variations in the
Rossby number have already been reported by the field studies of Armi et al. (1989).
Also we observe that the volume affected by a non-zero velocity v and density
anomaly ρ ′ is not constant as already observed by Hebert, Oakey & Ruddick (1990).
The volume delimited by any isoline of absolute density ρ does stay almost constant,
which could be for example the envelope of the original amount of warm and
salty water from the Mediterranean sea. However additional layers from the ambient
fluid are entrained in anticyclonic rotation by viscosity and their absolute density is
subsequently perturbed. The weak strength of the secondary circulations (i.e. relative
to the rotation velocity) we observe can account only for the global stretching and
not for strong intrusion mechanisms. On the contrary, field surveys on Meddy Sharon
(Armi et al. 1989) showed a net loss of salt and heat which was taken as the evidence
of strong lateral intrusions. From this phenomenon Ruddick & Hebert (1988) deduced
the lateral turbulent diffusivity as kH ∼ 0.4 m2 s−1, and an even higher estimation
kH∼ 10 m2 s−1 was given by Colin de Verdiere (1992). Finally, the mutual interaction
of diffusion of heat, salt and momentum may be responsible for other instabilities
such as double diffusion or McIntyre instability and will be the object of a future
experimental work.

Summarizing, the final erosion of a Meddy may be controlled by mixing
mechanisms other than the secondary circulations induced by momentum dissipation
and inaccessible to our laminar experiments. Nevertheless the study we performed
may explain why an object which is locally exposed to a viscous relaxation could
show a surprisingly long lifetime as a result of a non-trivial mechanism acting at
mesoscopic scales.
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